-
Numerical Gradient Verification
Understanding and correctly implementing backpropagation is crucial in deep learning. A common way to debug backpropagation is using numerical gradient checking. This involves approximating the...
-
Softmax and its Jacobian
The softmax function is a critical component in multi-class classification, converting a vector of arbitrary real values into a probability distribution. Given an input vector $\mathbf{z} = [z_1,...
-
L2 Regularization Gradient
L2 regularization (also known as Ridge Regression or weight decay) is a common technique to prevent overfitting in machine learning models by adding a penalty proportional to the square of the...
-
Backpropagation for a Single-Layer Network
Backpropagation is the cornerstone algorithm for training neural networks. It efficiently calculates the gradients of the loss function with respect to all the weights and biases in the network by...
-
Implementing Gradient Clipping
Implement **gradient clipping** in your training loop. This technique is used to prevent exploding gradients, which can be a problem in RNNs and other deep networks. After the backward pass...
-
Implementing the Adam Optimizer from Scratch
Implement the **Adam optimizer from scratch** as a subclass of `torch.optim.Optimizer`. You'll need to manage the first-moment vector (moving average of gradients) and the second-moment vector...
-
Differentiating Through a Non-differentiable Function with `torch.autograd.Function`
Implement a **custom `torch.autograd.Function`** for a non-differentiable operation, such as a custom quantization function. The `forward` method will perform the non-differentiable operation, and...